Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Identifying Quadratic Expressions

Definition of Quadratic Expressions

A quadratic expression is an algebraic expression having a degree of 2.

Identifying One Variable Quadratic Expressions

An algebraic expression in one variable is quadratic when:
  • The variable has an exponent of 2 on it
  • The variable does not have an exponent greater than 2
  • The variable does not have a negative exponent
In simple words the above three statements mean:
  • There is at least one term in the expression with x2 in it
  • There is no term in the expression with x3 or higher exponents in it
  • The expression does not have x in the denominator

Example

The algebraic expression x2+2x+3 is quadratic because
  • 'x' has an exponent of '2' on it
  • 'x' does not have an exponent greater than 2 on it, and
  • 'x' has an exponent of 1 in the term '2x' and an exponent of 0 in the term '3'

Counter Examples

  • The expression x3+3x2 is not quadratic because 'x' has an exponent greater than 2 in it.
  • The expression x2+1x is not quadratic because 'x' is in the denominator (and hence has negative exponents)
  • The expression 0x2+3x+2 is not quadratic because there is no term with x2 in it (the term 0x2 equals 0 so it is not considered)

Identifying Two Variable Quadratic Expressions

A quadratic expression can have two variables, given that 
  • the sum of exponents of both variables in any term is never greater than 2, and
  • there is at least one term whose degree is 2
  • no variable is present with a negative exponent

Example

x2+xy+y2 is a quadratic expression because
  • x and y do not have exponents greater than 2 in any term
  • sum of exponents of x and y in the term xy is 2

Counter Examples

  • x2y+xy+1 is not a quadratic expression because the sum of exponents of x and y in the term x2y is 3, which is greater than 2
  • xy+x2 is not a quadratic expression because y is in the denominator, thus making it a rational expression

1 comment:

Search This Blog