Solved Example 1
Factor `x^3 - 8`
Solution
Rewrite 8 as `2^3`,
Comparing with `a^3 - b^3`, we get`x^3 - 2^3`
`a = x` and `b = 2`Applying the formula of difference of cubes: `a^3 - b^3 = (a - b)(a^2 + ab + b^2)`, we get
`(x - 2)(x^2 + x*2 + 2^2)`Simplifying,
`(x - 2)(x^2 + 2x + 4)`
Solved Example 2
Factor `8a^3 - b^3`Solution
Rewrite 8 as `2^3`,
Comparing with `a^3 - b^3`, we get,`(2a)^3 - b^3`
`a = 2a` and `b = b`Applying the formula `a^3 - b^3 = (a - b)(a^2 + ab + b^2)`, we get
`(2a - b)((2a)^2 + (2a)(b) + b^2)`Simplifying,
`(2a - b)(4a^2 + 2ab + b^2)`
Solved Example 3
Factor `1 - x^3`
Solution
Rewrite 1 as `1^3` (because `1^3 = 1 * 1 * 1 = 1`).
Comparing with `a^3 - b^3`, we get`1^3 - x^3`
`a = 1` and `b = x`Applying the formula `a^3 - b^3 = (a - b)(a^2 + ab + b^2)`, we get
`(1 - x)(1^2 + 1*x + x^2)`Simplifying,
`(1 - x)(1 + x + x^2)`
No comments:
Post a Comment