Differentiate the following trigonometric functions:
`2sin(x) + cos(x) + 5tan(x)` | `2cos(x) - sin(x) + 5sec^2(x)` | |
`{sin(x)}/{cos(x) + 1}` | `(sin^2(x) + cos^2(x) + cos(x))/((cos(x) + 1)^2)`
which can be simplified to `1/(cos(x) + 1)` |
|
`sec(x) + csc(x) + sin^2(x)` | `sec(x)tan(x) −csc(x)cot(x) + 2sin(x)cos(x)` | |
`{sech(x)}/{1 + sinh(x)}` | `-sech(x) tanh(x) / (1+ cosh(x))` | |
`5sinh(x) +6tanh(x) - 7coth(x)` | `5cosh(x) + 6sech^2(x) + 7csch^2(x)` | |
`{5tan^-1(x) + 6csc^-1(x)}/{x^3 - 3}` | `((x^3 - 3)(5/(1+x^2) - 6/(|x| sqrt(x^2-1))) - (5tan^-1(x) + 6csc^-1(x))(3x^2))/((x^3 -3)^2)` | |
`4x^3 + x^2sin^-1(x) - x sec^-1(x)` | `12x^2 + x^2/(1 - x^2)+ 2xsin^-1(x)` `- x/(|x| sqrt(x^2 - 1)) - sec^-1(x)` |
Hi,
ReplyDeleteIt seems that the solution you have posted is incorrect. I believe the correct answer is:
f'(x) = secxtanx-cscxcotx+sin2x