- Trigonometric ratios
- Trigonometric identities
- Basic trigonometric identities
- Proofs of trigonometric identities based on basic trigonometric identities
- sin2(x) + cos2(x) = 1
- 1 + tan2(θ) = sec2(θ)
- 1 + cot2(θ) = cosec2(θ)
- tan2θ - [ 1 / cos2θ ] + 1
- cot2A - cos2A = cot2A cos2A
- 1 + [ tan2A / (1 + sec A) ] = sec A
- (1 + tan2(θ))(1 - sin θ)(1 + sin θ) = 1
- √ [ (1 + sinθ) / (1 - sinθ) ] = sec θ + tan θ
- sin θ / (1 - cos θ) = cosec θ + cot θ
- [ sin A / (1 + cos A) ] + [ (1 + cos A) / sin A ] = 2 cosec A
- tan^4(x) + tan^2(x) = sec^4(x) - sec^2(x)
- [ cos A / (1 - tan A) ] + [ sin A / (1 - cot A)] = sin A + cos A
- [ cos^2A + tan^2A - 1 ] / [ sin^2A ] = [ tan^2A ]
- sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A
- (1 + cot θ - cosec θ )(1 + tan θ + sec θ) = 2