The Math Blog

Trigonometry

  • Trigonometric ratios
  • Trigonometric identities
    • Basic trigonometric identities
    • Proofs of trigonometric identities based on basic trigonometric identities
      • sin2(x) + cos2(x) = 1
      • 1 + tan2(θ) = sec2(θ)
      • 1 + cot2(θ) = cosec2(θ) 
      • tan2θ - [ 1 / cos2θ ] + 1 
      • cot2A - cos2A = cot2A cos2A
      • 1 + [ tan2A / (1 + sec A) ] = sec A
      • (1 + tan2(θ))(1 - sin θ)(1 + sin θ) = 1 
      • √ [ (1 + sinθ) / (1 - sinθ) ] = sec θ + tan θ
      • sin θ / (1 - cos θ) = cosec θ + cot θ 
      • [ sin A / (1 + cos A) ] + [ (1 + cos A) / sin A ] = 2 cosec A
      • tan^4(x) + tan^2(x) = sec^4(x) - sec^2(x) 
      • [ cos A / (1 - tan A) ] + [ sin A / (1 - cot A)] = sin A + cos A
      • [ cos^2A + tan^2A - 1 ] / [ sin^2A ] = [ tan^2A ]
      • sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A 
      • (1 + cot θ - cosec θ )(1 + tan θ  + sec θ)  = 2
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Newer Post Older Post Home

Search This Blog

Adsense (Manually Added)

Related Solved Examples
Related Worksheet

MathJax

Copyright

© The Math Blogger ™
Settings for The Math Blog
Load MathJax
Save
Awesome Inc. theme. Powered by Blogger.