Multiplication of logarithms

Law of multiplication of logarithms:

Any quantity that is multiplied with a logarithm goes to the exponent of the logarithm's number.
n * log (a) = log (an)
Here 'n' is any value being multiplied with the logarithm. After multiplication, the value 'n' become the exponent of the logarithm's number 'a'.

Examples:


    Q) Multiply 2 with log(4)

    A)    2  log (4) = log (42)
              = log (16)


    Q) Multiply x with log(y)

    A)    x * log (y) = log (yx)



    Q) Multiply log (a) with log (b)

    A)    log (a) * log (b) = log (blog(a))



    Q) Multiply 2 with log (x + y)

    A) 2 * log (x + y) = log (x + y)2
             = log (x2 = y2 = 2xy)



    Q) Multiply (x + y) with log (x + y)

    A) (x + y) * log (x + y) = log (x + y)(x + y)

No comments:

Post a Comment