Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Solved Examples: Cube of a Sum (a+b)3

Solved Example 1

Expand the expression (x+2y)3

Solution

Compare the given expression with (a+b)3. Thus,
a=x and b=2y
Write the formula,
(a+b)3=a3+b3+3ab(a+b)
Put 'x' in place of 'a' and '2y' in place of 'b',
(x+2y)3=x3+(2y)3+3(x)(2y)(x+2y)
Simplify the expression,
(x+2y)3=x3+8y3+6x2y+12xy2

Solved Example 2

Expand the expression (3a+4b)3

Solution

Compare the given expression with (a+b)3. Thus,
a=3a and b=4b
Write the formula,
(a+b)3=a3+b3+3ab(a+b)
Put '3a' in place of 'a' and '4b' in place of 'b',
(3a+4b)3=(3a)3+(4b)3+3(3a)(4b)(3a+4b)
Simplify the expression,
(3a+4b)3=27a3+64b3+36ab(3a+4b)
=27a3+64b3+108a2b+144ab2

Solved Example 3

Expand the expression (x+y2)3

Solution

Compare the given expression with (a+b)3. Thus,
a=x and b=y2
Write the formula,
(a+b)3=a3+b3+3ab(a+b)
Put x in place of 'a' and y2 in place of 'b',
(x+y2)3=(x)3+(y2)3+3(x)(y2)(x+y2)
Simplify the expression,
(x+y2)3=x3+y38+3xy2(x+y2)
=x3+y38+3x2y2+3xy24

Solved Example 4

Expand the expression (x3+y4)3

Solution

Compare the given expression with (a+b)3. Thus,
a=x3 and b=y4
Write the formula,
(a+b)3=a3+b3+3ab(a+b)
Put x3 in place of 'a' and y4 in place of 'b',
(x+y2)3=(x)3+(y2)3+3(x)(y2)(x+y2)
Simplify the expression,
(x+y2)3=x3+y38+3xy2(x+y2)
=x3+y38+3x2y2+3xy24

No comments:

Post a Comment

Search This Blog